
FHWA-OP-02-048
EDL #13622

A Guide to

Configuration Management for Intelligent
Transportation Systems

April 2002

Prepared for

Intelligent Transportation Systems

Joint Program Office
US Department of Transportation

By Mitretek Systems, Inc.

 Technical Report Documentation Page
1. Report No.

FHWA-OP-02-048
2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle

A Guide to Configuration Management for Intelligent Transportation
Systems

5. Report Date
April 2002

6. Performing Organization Code

7. Author(s)
Paul J. Gonzalez

8. Performing Organization Report No.

9. Performing Organization Name and Address

Mitretek Systems, Inc.
600 Maryland Avenue, SW, Suite 755
Washington, DC 20024

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

 DTFH61-00-C-00001

12. Sponsoring Agency Name and Address
Department of Transportation
Intelligent Transportation Systems Joint Program Office
400 Seventh Street, SW – Room 3416
Washington, DC 20590

13. Type of Report and Period Covered

14. Sponsoring Agency Code
 HOIT

15. Supplementary Notes
William S. Jones – Task Manager

16. Abstract
This monograph is one of a series intended to introduce the topic of systems engineering to managers and
staff working on transportation systems projects, with particular emphasis on Intelligent Transportation
Systems (ITS) projects. Systems engineering is a discipline that has been used for over 50 years and has
its roots in the building of large, complex systems for the Department of Defense. Systems engineering is
an approach to building systems that enhances the quality of the end result and the expectation is that its
application to transportation systems projects will make those projects more effective in developing and
implementing the systems they are intended to build. Although applying systems engineering techniques
on a project doesn’t guarantee success, not following a systems engineering approach is a strong recipe
for failure.

This monograph covers the topic of Configuration Management. Configuration Management (CM)
formalizes the process of making changes to a system under development so that the system’s builders
maintain an appropriate configuration record and can always ensure that they know what the correct
version of the system consists of. It is intended to establish and maintain the consistency of a system’s
performance, functional, and physical attributes with its requirements, design, and operational information
throughout the system’s life and is considered a “best practice” within the system engineering discipline.

Managing changes to requirements is essential to minimizing cost and schedule overruns on transportation
system projects. CM’s ability to control changes to requirements is a major reason for employing it on ITS
projects.

This monograph is intended for use in conjunction with the systems engineering courses being offered by
the National Highway Institute.
17. Key Word

Systems Engineering, Intelligent Transportation
Systems, ITS, Transportation System Projects,
Configuration Management, CM

18. Distribution Statement
No Restrictions
This document is available to the public.

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages
 51

22. Price
 NA

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

 iii

Table of Contents

Section Page

List of Figures v

Executive Summary vii

Chapter 1 - Introduction 1

Purpose of This Document 1
Intended Audience 1
Origins of Configuration Management 2
Current Configuration Management Standards 2

Chapter 2 – Configuration Management Principles 5
Configuration Management Planning 5

Deciding What Configuration Items to Control 5
Deciding When to Control Configurations 10
Deciding How to Change a Configuration 12
Deciding on Configuration Management Resources 13

Configuration Identification 13
Configuration Control 15

Proposing Changes to a Configuration Baseline 15
Reviewing and Approving Changes to Configuration Baselines 16

Configuration Status Accounting 20
Configuration Audits 22

Chapter 3 – Configuration Management and ITS Systems 23
Using Configuration Management During ITS System Development 24
Using Configuration Management During System Operation 28
Web Development and Configuration Management 30
Configuration Management Costs 31
What If You Don’t Use Configuration Management? 32

Chapter 4 – Configuration Management Tools 33
International Council on Systems Engineering (INCOSE) 35
Institute of Configuration Management (ICM) 37

References 39

 v

List of Figures

Figures

No. Name Page

1 Hardware Levels for Configuration Management 7
2 Baselines in the System Life Cycle 11
3 Sample Engineering Change Proposal 18
4 Sample Configuration Management Organization 19
5 Change Control Process 21
6 Traceability Matrix Row Example 25
7 Expanded Traceability Matrix Row Example 26
8 Revised Traceability Matrix Row Example 27

vii

Executive Summary

Purpose of This Document

This document is one in a series of monographs on systems engineering topics developed
to help introduce this discipline to ITS project managers and their staff. While none of
these documents will turn the reader into an experienced practitioner in the area of
systems engineering, they are intended to give their audience a sense of how the topic
covered applies to Intelligent Transportation Systems (ITS). This monograph covers the
topic of Configuration Management. Although other monographs in this series discuss
configuration management briefly, none goes into the topic at the same level as this one.

Intended Audience

Our intended audience includes:

• ITS project managers
• ITS project staff
• Contractors and their staff working on ITS projects
• Anyone else interested in applying configuration management, particularly on

software-intensive systems

Our primary focus is on ITS project managers, but we hope to encourage others to learn
more about this area. Configuration management is a key applied systems engineering
practice, used to get systems built with maintainability and long-term health.

Conf

Origins of Configuration Management

iguration management, as a systems engineering discipline, began in the 1950s,
when the U.S. began developing tactical and strategic ballistic missiles. U.S.
manufacturers found that they had difficulty in mass-producing missiles from their
successful prototypes because they’d failed to record the contents of the successful
configuration in an organized manner. ANA (Army, Navy, and Air Force) Bulletin 390
was the first configuration management guide. It formalized the process of making
changes to a system under development so that the builders maintained an appropriate
configuration record. Thus, once the DOD accepted a prototype for production use, the
manufacturer could mass-produce the weapon. Over time, configuration management
has become an accepted practice in the manufacturing and software development
industries.

Current Configuration Management Standards

The two key broad configuration management standards are International Organization
for Standardization (ISO) ISO 10007:1995, Quality management – Guidelines for
configuration management and the American National Standard Institute (ANSI) and

viii

Electronic Industries Alliance (EIA) joint standard ANSI/EIA 649-1998, National
Consensus Standard for Configuration Management. Both of these documents are
equally applicable to hardware or software configuration management. The Institute of
Electrical and Electronics Engineers (IEEE) also has a standard relating to configuration
management, IEEE Std 828-1998, IEEE Standard for Software Configuration
Management Plans, which is part of the IEEE’s software engineering standards.

The two general standards for configuration management provide guidance on how to
employ configuration management on a project. The IEEE’s software engineering
standard provides more specific guidance on what to do for software configuration
management. A public sector project manager for an ITS project should look at the IEEE
standard to see what a software development contractor should have in a software
configuration management plan for a project.

Configuration Management Principles

Configuration management is defined as: “A management process for establishing and
maintaining consistency of a product’s performance, functional, and physical attributes
with its requirements, design and operational information throughout its life.”1 Figure
ES-1 illustrates how configuration management fits into the overall systems engineering
process. What this figure shows is that configuration management pervades the systems
engineering process, since it is a “best practice.” Table ES-1 is a checklist, taken from
material2 published by the Software Program Managers Network highlighting points that
they believe are part of implementing configuration management as a “best practice.”

System Life Cycle Stage
Config
Mgmt

Planning

Config
Identification

Config.
Control

Config.
Status

Accounting

Config.
Audits

Conception √
Requirements Analysis √ √ √
Design √ √ √
Implementation √ √ √
Integration & Testing √ √ √
System Acceptance √ √ √
Operation and Maintenance √ √

Figure ES-1
Configuration Management in the System Life Cycle Stages

Configuration management involves five major areas:

1 ANSI/EIA 649-1998, National Consensus Standard for Configuration Management
2 Taken from Software Program Managers Network, The Condensed Guide to Software Acquisition Best
Practices, p. 18, and Little Yellow Book of Software Management Questions, p.14

ix

• Configuration management planning – involves making decisions about what
needs to be controlled within a product configuration, when you establish a
controlled configuration, how you change a controlled configuration, and what
amount of effort you’re going to expend to manage configurations, with the
decisions formalized in a configuration management plan.

Table ES-1
Configuration Management Checklist

√

√

√

√

√

√

√

√

√

√

√

√

√

√

Is there a documented configuration management process for this project?

Is the configuration management process integrated with the project plan and an integral
part of the culture?

What classes of information does your project control?

What items are under control?

How is the decision to control them made?

Are all versions controlled?

Are configuration control tools used for status accounting and configuration
identification tracking?

Are periodic reviews and audits in place to assess the effectiveness of the
configuration management process?

Are all pieces of information shared by two or more organizations placed under
configuration management?

Who on the project is responsible for change control of baselined and
non-baselined items?

Do you have a configuration control board? If so, who are its members?

Do you have a process for controlling non-product software that is shared?

How does the developer make releases to the acquirer?

How does the acquirer take delivery of items from the developer?

• Configuration identification – involves identifying the configuration items and
the unique identifiers that you use to keep track of all items that need to be
independently identified, stored, tested, reviewed, used, changed, delivered and/or
maintained

x

• Configuration control – involves controlling what changes are made to the
configuration baseline and when and how they are made.

• Configuration status accounting – involves keeping track of the state of all
configuration items, all pending proposed changes, and all approved changes to
configuration items.

• Configuration audits – involves ensuring that:

- The configuration item performs as its design and specification indicate
that it should perform

- All configuration items for the system (or any of its subsystems) actually
exist before the system (or subsystem) is accepted for testing or for
production use

Configuration Management and ITS Systems

Configuration management’s purpose is to keep the physical implementation of a product
consistent with the documentation that describes how to build it and what it is supposed
to do. By keeping the product and all its associated documentation synchronized
throughout the development cycle, manufacturers reach the production stage of a product
life cycle ready to begin mass-producing it. Thus, it has value for mass-produced items.
Why does it also have value for “products,” such as ITS systems, that aren’t mass-
produced?

Some authors describe configuration management’s value in the design and
implementation of ITS systems when “we start to invest significant resources in hardware
and software development so further changes in requirements … start to get very costly
in terms of budget and implementation time.” This recognizes the value of good
requirements to quality ITS system development. Managing changes to requirements is
essential to minimizing cost and schedule overruns on ITS projects. Even if there were
no other use for configuration management on an ITS project, its ability to control
changes to requirements would be reason enough to employ it. Smith and Smith3 provide
testimonials on configuration management from several respondents and describe
configuration management’s use in a DOT’s system, as a systems engineering tool.

3 Smith, Brian L. and Bayne E. Smith, “An Evaluation of the Need for Configuration Management in
Transportation Management Systems,” The Transportation Research Board, November 2000

 xi

Configuration Management Costs

Configuration management doesn’t come free. One cost associated with it is the cost of
the configuration management system itself. The configuration management systems
market place changes frequently. The International Council on Systems Engineering
(INCOSE) tries to keep current on all systems engineering tools available to practitioners
and has a website (http://www.incose.org/tools/tooltax/cm_tools.html) that attempts to
keep a current and accurate database of available products.

Another important cost is that of administering the configuration management system
itself. The contractor on an ITS project may handle the project’s configuration
management responsibility, but the public sector project manager must plan for this and
incorporate these costs into his or her initial budget submission. When the project is
over, however, the configuration management responsibility for the ongoing system
becomes the government’s. Configuration management is an ongoing need as the system
evolves and requires maintenance over time. The public sector agency must integrate its
ongoing configuration management needs into its organizational structure and make sure
that its contractual agreement allows it to get the configuration management data that the
contractor maintained.

What if You Don’t Use Configuration Management?

You can avoid the costs associated with configuration management by not bothering to
employ it on your ITS projects. If you do, you’ll probably pay instead in costs for:

• Figuring out which system components to change when requirements change

• Re-doing an implementation because you implemented to meet requirements that
had changed and you didn’t communicate that to all parties

• Losing productivity when you replace a component with a flawed new version
and can’t quickly revert to a working state

• Replacing the wrong component because you couldn’t accurately determine
which component needed replacing

In addition, there’s another potential cost. If you have a system that affects safety,
configuration management can help you avoid mistakes that would endanger someone.
For example, consider the consequences of fielding a new or upgraded collision detection
radar with a subtle “bug” that fails to alert drivers about potential collisions when certain
conditions of rain, fog, or snow occur. It might not be a problem; if the specific climatic
conditions don’t occur where the vehicle is being operated. In areas where (and when)
they do, it could lead to loss of life.

The reason that configuration management is included as a key systems engineering
practice is simple. It works! It keeps you from incurring costs you need to incur. And,

 xii

good systems engineers have learned, through practical experience, that it pays for itself
many times over.

The lesson to learn is simple: Don’t pay the price later! Use configuration management.

 1

Introduction

Purpose of This Document

This document is one in a series of monographs on systems engineering topics developed
to help introduce this discipline to ITS project managers and their staff. The other
documents in this series are:

• Developing Quality Intelligent Transportation Systems Through Systems
Engineering, which is an overview of the entire systems engineering area

• Developing Functional Requirements for ITS Projects, which focuses on how to
establish good requirements to drive an ITS project to its successful conclusion

• Understanding Software Development: A Primer for ITS Public Sector Managers,
which introduces software development and its issues to public sector ITS
managers who may have had little or no experience with software development

While none of these documents will turn the reader into an experienced practitioner in the
area of systems engineering, they are intended to give their audience a sense of how the
topic covered applies to Intelligent Transportation Systems (ITS).

This monograph covers the topic of Configuration Management. Although other
monographs in this series discuss configuration management briefly, none goes into the
topic at the same level as this one.

Intended Audience

Our intended audience includes:

• ITS project managers
• ITS project staff
• Contractors and their staff working on ITS projects
• Anyone else interested in applying configuration management, particularly on

software-intensive systems

Although our primary focus is on ITS project managers, we hope our coverage of this
topic encourages others to learn more about this important area. Configuration
management is a key discipline applied in good systems engineering practice. It’s a
primary tool used to ensure that systems get built for their maintainability and long-term
health.

 2

Origins of Configuration Management

Although some writers on configuration management claim it had its start with Eli
Whitney’s invention of the cotton gin (which was built with standardized parts), most
believe that configuration management, as a systems engineering discipline, began in the
1950s with the building of complex military systems by the Department of Defense
(DoD). The first documents describing configuration management and how it should be
applied during the construction of products were military standards issued by the DoD.

In the 1950s, when the U.S. began developing tactical and strategic ballistic missiles,
U.S. manufacturers of these weapons found that they had difficulty in mass-producing
missiles for which they’d built successful prototypes. The major reason was that the
manufacturers had failed to record the contents of the successful configuration in an
organized manner. The first published military configuration management standard,
ANA (Army, Navy, and Air Force) Bulletin 390, addressed the engineering change
proposal for military aircraft, but could be applied to missile systems as well. It
formalized the process of making changes to a system under development so that the
builders maintained a record of the parts making up that system, what they did, and how
they were tied together, from beginning to end. Thus, once the final prototype was
accepted for production use, the weapon could be mass-produced. Over time, the
processes and tools used for configuration management have changed, but the basic
principles have not.

Configuration management has become an accepted practice in the manufacturing and
software development industries. We’ll discuss its value to these industries later in this
document.

Current Configuration Management Standards

There are two key standards that cover configuration management in a broad context.
The first is from the International Organization for Standardization (ISO)
ISO 10007:1995, Quality management – Guidelines for configuration management. As
indicated by its title, it is part of the quality control series of international standards. The
second is the American National Standard Institute (ANSI) and Electronic Industries
Alliance (EIA) joint standard ANSI/EIA 649-1998, National Consensus Standard for
Configuration Management. Both of these documents are equally applicable to hardware
or software configuration management.

The Institute of Electrical and Electronics Engineers (IEEE) also has a standard relating
to configuration management, IEEE Std 828-1998, IEEE Standard for Software
Configuration Management Plans. This standard is part of the IEEE’s software
engineering standards and focuses on software configuration management.

The two general standards for configuration management provide you with guidance on
how to employ configuration management on your project. They describe the kinds of
things that your configuration management system should do and relate configuration

 3

management to quality standards, such as the ISO 9000 series of documents. However,
they don’t specify a process. For that, you may want to look at some of the books listed
in the References section of this document, or similar material. If you are the public
sector project manager for an ITS project, you probably won’t set up the configuration
management system; you’ll have your integration contractor (or some other contractor on
the project) set it up and run it. But these standards help you understand what should be
going on, so that you can make better informed decisions about the process and how it’s
working.

The IEEE’s software engineering standard provides more specific guidance on what you
should plan to do for software configuration management. If you are the public sector
project manager for an ITS project, you should look at this document to see what your
software development contractor should give you in a software configuration
management plan for the project.

Now, let’s discuss what configuration management involves.

 5

Configuration Management Principles

The ANSI/EIA standard for configuration management4 defines configuration
management as: “A management process for establishing and maintaining consistency of
a product’s performance, functional, and physical attributes with its requirements, design
and operational information throughout its life.” This involves having a document (or
series of documents) that describes the components that make up any version of a product
(hardware or software), along with the requirements that the version of the product is
intended to satisfy. The documentation includes diagrams or descriptions of the
product’s design, its operating parameters, and anything else required to ensure that
interchangeable copies of the product can be produced at any time. On an ITS project,
the “product” is the system that you’re implementing.

Configuration management involves five major areas:

• Configuration management planning
• Configuration identification
• Configuration control
• Configuration status accounting
• Configuration audits

The following sections discuss each of these areas in more detail.

Configuration management planning involves making decisions about what needs to be
controlled within a product configuration, when you establish a controlled configuration,
how you change a controlled configuration, and what amount of effort you’re going to
expend to manage configurations. The decisions you make are formalized in a
configuration management plan, which becomes part of the documentation for the
product or system that you are building. This plan explains how you will control the
configuration of the system you are building.

Configuration Management Planning

Deciding What Configuration Items to Control

If your system, like most ITS systems, consists of both hardware and software items, you
must decide the level at which you will control these items. For hardware, you can
choose from among the following levels5:

• Part – one piece (or two or more joined together pieces) not normally subject to
disassembly without destroying or impairing the part’s designated use. Example:
a processor chip

4 ANSI/EIA 649-1998, National Consensus Standard for Configuration Management, p. 4
5 Adapted from Buckley, Configuration Management: Hardware, Software, and Firmware, pp. 7-9

 6

• Subassembly – two or more parts that form a portion of an assembly or a unit
replaceable as a whole, but having a part or parts that are individually replaceable.
Example: a printed circuit board

• Assembly – a number of parts or subassemblies (or any combination thereof),
joined together to perform a specific function. Example: a traffic signal controller

• Unit – an assembly or any combination of parts, subassemblies, and assemblies
mounted together, normally capable of independent operation in a variety of
situations. Example: a traffic signal controller cabinet

• Group – a collection of units, assemblies, or subassemblies that is a subdivision of
a set or system, but is not capable of performing a complete operational function.
Example: time-based coordinated system

• Set – a unit or units and necessary assemblies, subassemblies, and parts connected
or associated together to perform an operational function. Example: closed-loop
system

• Subsystem – a combination of sets, groups, and so on that performs an operational
function within, and is a major division of, a system. Example: Regional
automated traffic control subsystem

• System – a combination of parts, assemblies, and so on, joined together to
perform an operational function or functions. Example: an automated traffic
system

Figure 1 illustrates these hardware levels.

The hardware level at which you manage your configuration depends on your
maintenance plans or expectations for the future. If you will maintain the system by
diagnosing and replacing failed chips, or if you anticipate chip upgrades in the future,
you’d manage your configuration at the parts level. If you plan to perform “board level”
maintenance, you’d manage your configuration at the subassembly level. This is the
same level you’d use if you anticipate future “board level” upgrades or if, as in the case
of a type 2070 traffic signal controller, different controller assemblies have different
boards, depending on what function they perform.

If you’re going to install and maintain hardware as a complete assembly and treat
controllers as “black boxes,” you can manage your configuration at the assembly level.
This is the level you’d use if knowing the model number of a device is sufficient, since
you’re going to maintain the devices by model number.

You could also choose to manage your configuration at the unit level. For a traffic signal
system, this would mean tracking the entire set of intersection equipment (controller,
flasher, conflict monitor, load switches, etc.) as a single element in your configuration

 7

Processor

Chip

Automated
Traffic
Control

•
•
•

•
•
•

Regional

Subsystem

•
•
•

•
•
•

Closed-loop

system

•
•
•

•
•
•

Traffic Signal
Controller

Cabinet

•
•
•

•
•
•

Time-based
Coordinated

System

•
•
•

•
•
•

Traffic Signal

Controller

•
•
•

•
•
•

Printed

Circuit Board

•
•
•

•
•
•

System

Subsystem

Set

Group

Unit

Assembly

Sub-
assembly

Part

Figure 1
Hardware Levels for

Configuration Management

 8

Upgrading Desktop Software

Pick up a shrink-wrapped box of your favorite software (or some
new piece of software you’d like to try) at your local software
store and look at the box it comes in. Usually, on one of the box
panels, you’ll find information about the hardware and operating
systems required to run the software. For example, it may say
that it runs on “Windows ME/2000/NT.” It may require a
“Pentium II 266 Mhz processor, 64 Mbytes RAM, and 20 Mbytes
storage available.” It may need a “4X CD-ROM.” What this
tells you is that the manufacturer of the software certifies it to
work on certain operating systems and has indicated the
minimum hardware requirements to run the software. If you
have a faster processor, a faster CD-ROM drive, more memory,
and more free disk space, you can run the software. But if any of
your hardware is less capable, smaller, or slower than that
required, the software probably won’t run. The issue is less clear
when we’re dealing with the operating system. If you have a
later operating system than the one listed by the software
manufacturer, the software may run on it, but there’s no
guarantee.

Still using the PC example, if you had software that ran under
DOS, it wouldn’t run directly on a Windows operating system. It
would still work if the Windows operating system lets you run
your computer in ‘DOS mode.’ But the latest version of
Windows, Windows 2000, no longer has a ‘DOS mode.’
Therefore you can’t run DOS software if you’ve upgraded to that
version. In fact, sometimes DOS software wouldn’t run on later
versions of DOS, because the programs checked for the DOS
version number and only executed if they recognized the version
number.

Program incompatibilities with hardware and software occur
because each manufacturer is upgrading its product to meet
changing demands and is not necessarily concerned with
maintaining compatibility with older operating systems or
hardware platforms.

In the business world, companies have to consider hardware and
software compatibilities when they upgrade applications,
operating systems, and database management systems. If your
automated traffic control system is only certified to run under
Oracle’s relational database management system (RDBMS)
version 7.4, you may not want to upgrade to Oracle RDBMS
versions 8i or 9i and take the chance that the software will no
longer function properly.

management system. If this level is adequate for your operation and maintenance of your
system, then you can manage your configuration at this level.

The other levels of hardware are inappropriate for managing the configuration of most
ITS systems.

For software, you establish control over
the software configuration items at
different levels, depending on the type
of software that you’re managing. For
application programs, i.e., the software
that performs the “business” functions
of your system (where “business” refers
to the mission of the system), you need
to control the software configuration
items at the individual program
component level. And your will need
to control two kinds of application
programs: source code, which is the
program in the original programming
language, and executable code, which
is the program in the “machine”
language of your computer. For
commercial off-the-shelf (COTS)
software, i.e., software you acquire
from a vendor and use (more or less) in
the form that you receive it, you may
only need to control the software at the
product (system) level. This type of
software includes:

• Operating systems (OS)

• Database management systems
(DBMS)

• Geographic information
systems (GIS)

• Development tools, e.g.,
compilers, computer-aided
software engineering (CASE)
tools

• Test tools

 9

For software configuration items that you are controlling at the component or program
level, you need to know the item’s unique identifier (name or number), the physical
directory or storage location where the item is kept, and any other information (e.g.,
version number) that uniquely identifies the program. You also need to know what
software libraries are used with the program, specifically identifying the components
from each software library that get compiled with the program. For software
configuration items that you are controlling at the system level, you must know the
physical directory or storage location where the system is kept, the version number, and
what, if any, associated “patches,” program modifications that the system’s vendor
supplies to correct problems with the software, have been applied.

Some COTS software items also have relationships with the hardware on which they run
and with each other. For example, for specific models of computer hardware and
operating system versions, you may need to have a specific version of a DMBS or GIS
installed. Later versions of the DBMS or GIS software may not run as effectively on a
particular combination of hardware and operating system, if the COTS software was
optimized for later hardware/OS combinations.

Another area to consider is documentation. Documents contain the written record of your
system as it evolves. The types of documents you should consider controlling include:

• System requirements
• Interface control documents
• High-level design documents
• Detailed design documents
• Hardware technical data packages
• User manuals
• Maintenance manuals
• Program specifications
• Test plans
• Test procedures
• Test reports
• Test data documents6

Every controlled document must have a unique identifier, so that it can be inventoried
and controlled. In addition, each copy of a controlled document should have its own
copy identifier, e.g., “copy x of n copies,” so that you can keep track of who has copies
of controlled documents. When a document changes, you must send copies of the
changes to all holders of copies of controlled documents. (It helps to have dates
associated with each page of a controlled document. Then, one can always verify that
one has the latest version of a controlled document by comparing the dates in one’s copy
to the dates in the Master copy of the document.)

6 The test data themselves, in electronic form, should also be controlled, to ensure that tests can be repeated
as necessary.

 10

Other elements that you should consider when deciding what to put under configuration
management include:

• Communications interconnections – think about maintenance issues related to
your wide area networks (WANs) and local area networks (LANs). For example,
if you are using static IP (Internet Protocol) addresses on your local area network,
you can’t issue the same IP address to two or more devices on that network.
Doing so causes address-resolution conflicts and leads to network problems.
Managing IP addresses through your configuration management system helps you
avoid these conflicts. Other questions you might ask include: What are you
going to need to know to operate and maintain these networks effectively? Do
you know how data ports are connected to routers or bridges so that you can trace
and diagnose network issues when they occur? Questions like these help you
decide what configuration items to manage.

• Wiring – do you know what wires or cables connect different pieces of

equipment? Can you identify the wires or cables through some physical identifier
that allows you to find a specific wire or cable in a (possibly tangled) collection of
wires and cables? Do you know what frequency assignments have been made
where multiplexing is used? Questions like these are important in deciding what
configuration items to manage.

• Numbering – how do you link numbering schemes for detectors,

communications links, and other elements in your network so that you can trace
data from a detector in the field to a record in a database or to one of your
displays? Can you trace the connections from one end of a communications line
to another?

It’s important to think about how you plan to use the information in your configuration
management system after the system you’re building is in operation. Consider the
operation and maintenance aspects of that system and it’ll help you decide what items
you need to manage in a configuration management system.

Deciding When to Control Configurations

In configuration management, control over a configuration is normally established after
the project reaches a baseline. Originally, baseline was an engineering surveying term
that described a boundary line, with known direction and fixed end points, from which
engineers extended maps into previously unmapped terrain. In systems engineering, we
normally define six major baselines for a system, shown in Figure 2:

• Requirements baseline: the point at which the major requirements for the system
have been defined

 11

System Conception

Requirements Analysis

Design

Development

Test

Acceptance Test

Operations and Maintenance

Figure 2
Baselines in the System Life Cycle

Requirements Baseline

Functional Baseline

Allocated Baseline

Developmental Baseline

Product Baseline

Operational Baseline

 12

• Functional baseline: the point at which all of the functions of the system have
been identified

• Allocated baseline: the point at which all of the system’s functions have been
allocated to the system’s components in which they will be performed

• Developmental baseline: the point at which the system’s design is complete
enough to begin development

• Product baseline: the point at which the system is ready for installation

• Operational baseline: the final version of the system, as put into production use

It’s important to note that a system, if it is developed in stages or phases, can have
multiple baselines in place simultaneously. For example, one version of the system can
be in its operational baseline, while a second version of the system – the next version to
be fielded – could be at its developmental baseline. A third version of the system, one
that’s just being planned, could be only at its requirements baseline.

It’s also possible to combine some of the baselines. For example, one could combine the
functional and allocated baselines into a single baseline that described what the system
was intended to do at a detailed level. One could also combine the product and
operational baselines, if the system will not change between the time it is accepted for
operational use and when it is actually put into operational use.

The documentation for any baseline consists of descriptions of the configuration items
under configuration control, the configuration items themselves, and all changes
approved to the configuration items being controlled.

Deciding How to Change a Configuration

You’re not likely to build a system without having some changes to an established
baseline. The goal of configuration management is not to keep changes from occurring,
but to permit changes in a controlled fashion, ensuring that what is being built is
internally consistent with its description at all times. At the same time, it’s best to avoid
unnecessary changes to configuration baselines, as any change can increase either the
amount of time necessary to build the system or the cost of building the system, or both.

The configuration management plan should indicate who may propose changes to a
baseline, and what kind of justification for changes is necessary. It should also state the
process for proposing and justifying a change, describing any forms you want used for
change proposals. In many organizations, there is a formal document, often called the
Engineering Change Proposal (ECP), that is used to describe proposed changes to a
system’s configuration baseline. You may decide to use a different approach, but it’s
better to have some formality in this process. The formality in the process creates an
audit trail of all changes considered as well as a record of those approved, those rejected,

 13

and those deferred. This audit trail can come in handy in future assessments of proposed
enhancements or changes to the systems.

Deciding on Configuration Management Resources

Although the ideal situation would be to embed configuration management practices as
part of the normal project management process, frequently good configuration
management requires project staff resources devoted to this effort, at least part time. On
large projects, with many configuration items and many change proposals, configuration
management can easily become a full-time job for more than one person on the project
staff.

You need to decide upfront how much effort you’re willing to spend on this activity and
who will do it. You can use your own organizational resources or you can contract out
the configuration management activity. Either way, there is a cost involved and you need
to understand what it will be and plan for it.

Configuration Identification

The things within a configuration baseline that you decide to control through
configuration management are known as configuration items. Kelly provides a good
definition of what a configuration item is:

“A configuration item (CI) is any part of the development and/or deliverable system
(whether software, hardware, firmware, drawings, inventories and/or documentation)
which needs to be independently identified, stored, tested, reviewed, used, changed,
delivered and/or maintained. CIs differ widely in complexity and may contain other CIs
in a hierarchy.”7

Once you’ve decided what configuration items to control, you’ve just begun the effort.
Each item that you want to control must have a unique identifier associated with it. The
item’s identifier for the item should be marked on it in some fashion (if possible), so that
the item can be identified without error and tracked.

There are several reasons for this. First, you want to be able to know what items you
have under configuration control and be able to locate them. Marking them with a unique
identifier makes it possible to do that. Second, you want to be able to track the status of
each item as it progresses toward completion. If there are changes to be made to an item,
you want to know what its current status is and whether the change has been incorporated
in it. Third, if a change made to a specific item of a group of like items makes it different
from the other items it resembles, or if a unit (or higher level of hardware aggregation)
contains a part, subassembly, or assembly that makes it different from other similar units,
you want to be able to track these differences and any impact they may have on the
system. For example, suppose you’re upgrading the signal controllers in a traffic signal
system, replacing older controllers with newer, more capable ones. If, during the

7 Kelly, Configuration Management: The Changing Image, p. 36

 14

upgrade, the manufacturer of the new signal controllers tells you that a chip set in some
of the controllers is faulty, you’d want to know which controllers are affected and where
they are, so that you could replace the faulty chip sets.

The latter reason, known as the “where used” problem, may require expanding the
information kept on a particular configuration item to include data on what parts,
subassemblies, and assemblies it contains. Many organizations require this when the
failure of an incorporated part, subassembly, or assembly could have a significant effect
on safety or cause serious social or financial losses. Airlines, for example, keep a record
of key parts, such as engines, that make up their aircraft. Then, in case of a crash that is
attributed to engine failure (or the failure of some other critical part), they can check out
other aircraft that might suffer the same fate because a part with a similar history also
fails.

The “where used” problem can affect software as well. Take the following two
examples.

First, remember the “Y2K” issue that, back in the late ‘90s, was considered a major issue
we faced? The concern was that some existing software wouldn’t correctly handle dates
when the first two digits of the century changed from ‘19’ to ‘20’. One of the major
aspects of that problem was determining where date-handling routines were used that
assumed two-digit year values should be preceded by ‘19’. Identifying those software
items was the first step in fixing potential problems. Then, after you’d identified the
software items, you had to know which ones had been fixed. The third step was to
replace the flawed item(s) with the fixed one(s). The effort involved in the next step
depended on how many different copies of the same flawed date-handling routine were in
use and where they were being used. In many cases, particularly for commercial
products where an organization might use copies of the same product on multiple
computers, once all of the Y2K bugs in the software were fixed, organizations still had to
ensure that they replaced each copy of the flawed software with a corrected version. This
meant being able to link the flawed software product to all instances where it was
installed.

Second, consider the case of a traffic signal control system where each controller is
running software that manages the signals it controls. Whenever you replace that
software, you have to go in and install a new (updated) version of the software in each
controller. If you find, during the process of replacing the software, that the new
software has a critical “bug,” you have one of two options: 1) quickly get a corrected
version of the software and replace all the “buggy” versions as well as the older
versions8; or 2) re-install the older versions of the software in all controllers that have the
new, buggy software and wait until you get a corrected version of the software from the
vendor – then you can install the correct version in all your controllers. Regardless of
which option you choose, you need to know where the flawed software is being used. If
you don’t know where you’ve installed the buggy software and thus don’t replace it with
software that works properly, you are incurring a latent liability.

8 If the bug was a safety-related one, you wouldn’t normally choose the first option.

 15

Exactly what detail you need for appropriate configuration identification depends on the
specific needs of your system and your operational needs. At a minimum, you need to
have all hardware and software items (and you have to define what these “items” are)
identified and controlled, if you’re going to do effective configuration management. But
consider the “where used” issue and determine if it applies to your system. Don’t get
caught short.

Configuration Control

The principal concern in configuration control is controlling what changes are made to
the configuration baseline and when and how they are made. In the ideal world, you
could “freeze” a configuration baseline and permit no changes until the product or system
was completed. In the real world, “freezing” a baseline is impractical. To freeze a
baseline, you’d have to be sure that no changes to it would be needed to make it work
properly. In reality, since fallible human beings build systems, change is common,
mostly to correct mistakes that people have made in the design or development of system
components.

But even though changes are generally needed, you shouldn’t make any change to an
approved baseline until you’ve assessed and evaluated its potential impact. The process
of proposing, assessing, evaluating, reviewing, and deciding whether to approve or reject
a proposed change is configuration control. This is probably the most critical area of
configuration management, because it can most strongly affect the success of the project.

Proposing Changes to a Configuration Baseline

It’s commonly said that, “Anyone can propose a change through configuration
management.” Well, you decide who “anyone” can be when you prepare your
configuration management plan. In the developmental stages of a system, the designers
and developers are usually the ones who are proposing changes. If your system
developer is a contractor that you’ve hired, the contractor proposes changes to the system
design or to system components under development when the contractor believes that the
change enhances the chances of meeting the project schedule or controlling the costs of
building the system. Contractor personnel also propose changes when they believe that
there is some new technology or approach whose incorporation would enhance the
system. Frequently, when the contractor proposes a change, the contractor also provides
an assessment of the overall impact of that change on the project, i.e., what its effect will
be on the project schedule and/or project cost. It is also possible for users to propose
changes during system development stages, usually because they perceive a change (or
error) in their requirements for the system.

If a change corrects an error in a system requirement or system component, there is a
strong case for approving it. Regardless of the cost of fixing the change at the time it is
proposed, it is usually significantly cheaper to fix a mistake during the developmental
stages than after the system has been implemented. Studies have shown that the cost of

 16

fixing a mistake goes up as much as 10 times with each subsequent stage in the system
life cycle. However, if the change is an enhancement to the system, an expansion of the
scope of work of building the system, there is a strong case for disapproving it.
Generally speaking, enhancements can be and should be postponed until you’ve operated
the initial version of the system for enough time to judge its capabilities and decide what
improvements are really needed. If someone proposes a change just to insert new
technology into the system, this proposal should be studied carefully. While new
technology can provide cost savings, it also brings risk with it, particularly if it is
unproven technology. It may be better to wait until the system is implemented and you
are ready to enhance it before introducing something new and unproven.

Reviewing and Approving Changes to Configuration Baselines

Most configuration management systems require a specific format for submitting a
change proposal. In many cases, this format is known as the Engineering Change
Proposal (ECP). Figure 3 illustrates a sample ECP. The data that should appear on an
ECP include:

• Name of the individual proposing the change

• Contact information (e.g., telephone number) for the individual proposing the
change

• Configuration item(s) for which the change is proposed (may either be the
identifying number(s) or a description of the item(s) if the proposer doesn’t know
the identifying number[s])

• Description of the proposed change

• Priority/Importance of the proposed change – this can be an error severity level,
e.g., “fatal,” “serious,” “moderate,” etc., or a priority scheme, such as
“immediate,” “high,” “medium,” “low”

• Description of the impact if the change is not made (proposer’s judgment)

You can include other data in the format of the ECP (or whatever name you use for your
change request), but these are the minimum data to ask for.

The next step in the process is for someone to review the change and decide what impact
making it will have on the system and the project. There are two kinds of reviews that
may need to be done: a technical review and a business review. The technical review
considers the technical aspects of the proposed change:

• What configuration items (other than the one identified in the ECP) does it affect?

• Is the change technically feasible?

 17

• What will this change involve in terms of modifications to the different

configuration items affected?

• How much effort (labor) will be involved in making the change?

• How much will making the change cost in additional project costs?

• What delays, if any, will this cause in the project schedule?

• How severe an impact, from a technical point of view, will not making the change
have on the system and the project?

• Are there “work arounds” that could be used to postpone or avoid making the
change? If so, are these practical?

The business review considers similar types of questions:

• What business processes are affected by this change?

• Does the proposed change make sense from a business point of view?9

• Will this change improve business processes? Or does the change fix a problem
within an existing business process?

• Will current staff resist this change?

• How severe an impact, from a business point of view, will not making this change
have on the system and on the project? (This is an assessment or validation of the
justification provided in the ECP.)

The developer on the project normally carries out the technical reviews, as that
organization usually has the best technical overview of the project. However, user
personnel, from the system’s customer organization should carry out the business
reviews. These are the people who best understand the business impact of a proposed
change.

9 In this context, “business” refers to the mission of the government organization involved. If, for example,
the mission of the government agency were as simple as “provide accurate traveler information on traffic
conditions,” the questions asked about the change would relate to how it affected the agency’s ability to
provide accurate and timely information on traffic conditions along its area of responsibility.

 18

Engineering Change Proposal

ECP No: ECP Title Date Submitted:
Originator Name and Address: Configuration Items Affected:

Originator Telephone No: Priority:
Description of Proposed Change:

Reason for Change/Impact of Non-Incorporation:

Potential Risks of Change:

Expected Cost of Change: Expected Duration:

Disposition
 Approved
 Disapproved
 Deferred

Disposition Date:

Disposition Authority:

Comments

Figure 3

Sample Engineering Change Proposal

 19

If the project is large and complex, the people who do the reviews may be organized into
standard teams and assigned permanent configuration management responsibilities on the
project. Otherwise, they may be convened to do these reviews on an ad hoc basis.
You’ll need to decide which approach to take during your configuration management
planning. If the teams are organized as permanent review teams, then the project’s
configuration management organization might appear as depicted in Figure 4.

Figure 4

Sample Configuration Management Organization

We’ve already discussed the roles of the two review teams. Let’s consider the other two
boxes on this organization chart.

The Configuration Manager is the individual to whom you assign overall responsibility
for the mechanics of configuration management. He or she is responsible for defining,
implementing, and maintaining the configuration management system for the project and
the system (or product) being built. This does not have to be a full-time role for the
individual, although on projects with large numbers of configuration items that need to be
controlled it could be a full-time job10. This individual makes sure that all configuration
items are identified, that their status is kept up to date and all status reports are prepared
and distributed to the appropriate parties, that configuration audits are done as needed,

10 Some projects are large enough to have separate individuals, reporting to the Configuration Manager,
assigned responsibility for 1) Documentation, 2) Hardware, and 3) Software. In those cases, it may also be
necessary to have an individual who is the Configuration Control Clerk, who handles all of the
administrative paperwork involved in very complex configuration management on very large projects. In
the ITS world, such projects will be rare.

Configuration
Control Board

Configuration

Manager

Technical

Review Team

Business

Review Team

 20

and – very important – that all proposed changes are reviewed and evaluated and a report
on them, with a recommendation on whether they should be approved, is prepared for the
Configuration Control Board.

The Configuration Control Board is a critical part of configuration management. This is
the group that is empowered to review and approve or reject all changes that have a
material effect on the overall project schedule and costs. (“Material effect” means that
either the project schedule gets longer or the project cost increases or both.) On ITS
projects, the chair of the Configuration Control Board is usually the Government Project
Manager, since that individual has overall responsibility for project schedule and budget.
In addition, the Configuration Control Board should include at least one key user
representative (to bring the “business” focus to the board), and a Contractor
representative, usually the Contractor’s project manager. Others who might serve on the
board include a senior public sector with funding responsibility (because of the potential
for cost impacts on the project), and the project’s Configuration Manager.

Figure 5 illustrates how the configuration management process might work. The
Configuration Manager must ensure that all change proposals are reviewed and
evaluated, with the evaluation including a recommendation to the Configuration Control
Board on whether they should approve or reject the change. It is the Configuration
Control Board’s responsibility to make the decision to accept or reject the change
proposal. Once they make the decision, it then becomes the Configuration Manager’s
responsibility to communicate that decision and track its implementation. If the change
proposal is rejected, the Configuration Manager informs the originator of the result; if the
change proposal is accepted, the Configuration Manager informs the originator and also
passes the approved change proposal over to the appropriate project team for
implementation. The Configuration Manager tracks the status of all approved change
proposals until they are incorporated in the relevant configuration item(s).

Configuration Status Accounting

Configuration status accounting means keeping track of the state of all configuration
items, all pending proposed changes, and all approved changes to configuration items.

The status accounting process is mostly one of reporting on what progress the project
team has made in completing configuration items and in incorporating approved changes
into configuration items. Originators of ECPs are interested in the status of their
proposals, so they will want to see reports giving the status of pending ECPs. But,
although the configuration status accounting process may seem trivial, there is one
important function that it plays. It provides a very useful metric on the quality of specific
configuration items.

A truism in system development is that, if a specific item under development has several
problems that have led to ECPs to fix errors, then there are probably additional errors in
that item that have not yet been found. The configuration status accounting process can
lead to early detection of potential problem spots in the system design, if there are

 21

clusters of ECPs, related to “bug” fixes, around specific configuration items. The
Configuration Manager should be alert to this type of issue and raise it to the project
manager should it occur.

Originator prepares
change proposal

Change evaluated by
technical and business

review teams

Change
recommended?

Change passed to CM
for logging and

analysis

Change considered by
Configuration Control

Board

Change
approved?

Change logged as
approved and turned

over to team for
implementation

Change implemented

Change to be
reworked?

Change reworked and
resubmitted for review

and evaluation

Originator notified of
change proposal

disposition

No

No

Yes

Yes

No

Yes

Figure 5
Change Control Process

 22

Configuration Audits

There are two basic types of configuration audits: the Functional Configuration Audit
(FCA), and the Physical Configuration Audit (PCA). The Configuration Manager or his
representative conducts a FCA to make sure that the configuration item performs as its
design and specification indicate that it should perform. FCAs should be conducted prior
to the beginning of any test phase on the project. A PCA is an inventory of the
configuration items for the system (or any of its subsystems) and ensure that all of the
items are actually in existence before the system (or subsystem) is accepted for testing or
for production use.

The Configuration Manager, in conducting a PCA, should rely on the status reports for
the baseline being audited to know what items it should include.

We’ll that’s a quick tour of what configuration management’s all about. Now let’s look
at how configuration management fits into the ITS context.

 23

Configuration Management and ITS Systems

The basic purpose of configuration management is to keep the physical implementation
of a product consistent with the documentation that describes how to build it and what it
is supposed to do. During product development, manufacturers use configuration
management to track the evolution of a product and its design. This is true whether the
product is a physical thing or software. By keeping the product and all its associated
documentation synchronized throughout the development cycle, manufacturers reach the
production stage of a product life cycle ready to begin mass-producing it and packaging it
for sale along with its instruction and maintenance manuals.

Thus, configuration management has value in cases where the product will be mass-
produced. Why does it also have value for “products,” such as ITS systems, that aren’t
mass-produced?

McQueen and McQueen point out configuration management’s value in the design and
implementation of ITS systems as follows:

“At this point [design and implementation] we start to invest significant resources in
hardware and software development so further changes in requirements will start to get
very costly in terms of budget and implementation time. There is also no point in kidding
ourselves that the requirements are completely set in concrete. There may be legitimate
reasons discovered once the implementation is under way for changing requirements.
Having recognized that this is the case, it is absolutely vital that some mechanism be
established to manage this aspect of the implementation.

In our experience, many of the problems associated with cost and time overruns in ITS
implementations have their origin in this issue. While recognizing that a few late
changes are inevitable, these need to be managed and subjected to a high degree of
discipline. The system engineering profession has identified this as an important issue
and developed management techniques to address it. These are referred to as change
control or configuration management procedures.” 11

This quote recognizes that good requirements are critical to quality ITS system
development and that the issue of managing changes to requirements is essential to
minimizing cost and schedule overruns on ITS projects. Even if configuration
management had no other use on an ITS project, its ability to control changes to
requirements would be reason enough to employ it.

Smith and Smith also attest to the value of configuration management in ITS. Their work
is based in part on a survey they conducted in the spring of 2000 to determine whether
and how State Departments of Transportation (DOTs) used configuration management in
transportation projects. They received responses from 36 State DOTs and found that “as
systems get larger and more complex, the use of configuration management becomes

11 McQueen and McQueen, Intelligent Transportation Systems Architectures, pp. 293-4

 24

more commonplace.” 12 In addition, they report the following three testimonials on
configuration management as representing strong support from many respondents:

“With almost 20 years in the design, implementation, modification and expansion of our
system, the benefits of being quickly able to recover by returning to an earlier working
state are enormous. Our system has been very dynamic, and there is always some area
where we are working on improvement or upgrade, while still actively managing traffic.”

“As in any large, complex system, configuration management can provide a constant
understanding of the current state of the system…. The key factor in configuration
management is having a central repository of information for reference as personnel
changes occur over the life of the system. It is also a great aid in maintaining the system
when items are replaced for repair. Technicians should have ready access to
configuration data when installing or re-installing standard system components.”

“A formal, documented configuration control process can save operational costs over the
life of the contract and mitigate the impact of personnel and equipment changes.”13

The Smiths also include a case study of configuration management’s use in the Georgia
DOT’s (GDOT’s) Navigator system, which GDOT developed to manage transportation
in Georgia for the 1996 Olympic Games. The Utah DOT (UDOT), which is adapting
Navigator for use during the 2002 Winter Games in Salt Lake City, also is using
configuration management to handle its changes to the Navigator system. Both states are
strong believers in its value as a systems engineering tool.

So, given that configuration management is important, how do we use it? First, let’s
consider how we might use configuration management during the development of an ITS
system.

Using Configuration Management During ITS System Development

In ITS system development, as in all good systems development, the place to start is with
requirements. Say we’re building a system that involves traffic monitoring. We might
write some requirements for the traffic-monitoring portion of the system as follows:

R9 The system shall have the ability to monitor traffic volume
 R9.1 The system shall measure traffic volume

R9.1.1 The system shall measure traffic volume in 5-minute
increments

 R9.2 The system shall measure traffic speed

We’re numbering our requirements uniquely, prefixing each with the letter “R” and
getting more detailed about what’s required the more digits to the right we add to the
requirement number.

12 Smith and Smith, “An Evaluation of the Need for Configuration Management in Transportation
Management Systems,” p. 15.
13 Ibid., pp 15-16.

 25

At some point in the design process, we transform requirements (statements about what
the system must do) into specifications (statements about how the system will perform
the action that satisfies the requirement). So we might transform requirement R9.1.1 into
the following specification:

S38.17 The system shall calculate traffic volume by summing the actuations of each
detector over a five-minute period.

Here we’re numbering specifications with an “S” prefix. The unique numbers we assign
to each requirement and each specification will aid us in tracking the relationship among
requirements and other elements of the system and its design.

In turn, we might decide to implement this specification using three separate software
modules, as follows:

• Detector Data Module 31 (DDM031) – records each detector actuation that occurs,
time-stamps it with date and time, down to the nearest second, then transmits the
data to a summarizing module

• Volume Summary Module 22 (VSM022) – summarizes all actuation data that it

receives during each discrete five-minute interval. At the end of each interval, it
passes the summarized counts to a data storage module, clears its counters, and starts
over again.

• Data Storage Module 40 (DSM040) – takes the summarized traffic volume data and

records it, along with the data and start time of the five-minute interval, in a traffic
volume database.

Each of these modules has a unique identifier as well. In our example, we’ve used a
three-letter prefix to identify the area in which the module functions and then added a
three-number suffix to distinguish each module from others in the same area.

It’s important for us to know how requirements relate to other system elements, so we
create a traceability matrix that shows the interrelationships. One row in that matrix
might look like Figure 6.

Requirement Specification Software Modules
R9.1.1 S38.17 DDM031, VSM022, DSM040

Figure 6

Traceability Matrix Row Example

At some point in our development effort, we’ll create tests to determine whether the
system meets the defined requirements and how well it meets them. We need to link

 26

each test defined to all requirements that it verifies and validates. Let’s say we define the
following test to determine whether we’ve met Requirement R9.1.1:

Volume Test 63 (VT063) – This test will run for 12 minutes, falling into three
discrete five-minute increments:

• Increment #1 – From T+2:00 to T+4:59: 17 vehicles will pass through the
detection area

• Increment #2 – From T+5:00 to T+9:59: 42 vehicles will pass through the

detection area

• Increment #3 – From T+10:00 to T+13:59: 28 vehicles will pass through

the detection area

This is a controlled test, with known quantities of vehicles passing through the detection
area, to determine how well the system performs and whether the system does calculate
traffic volumes correctly for each five-minute period. We correlate this test to the other
elements in our matrix by expanding the row as shown in Figure 7.

Requirement(s) Specification(s) Software Module(s) Test(s)
R9.1.1 S38.17 DDM031, VSM022, DSM040 VT063

Figure 7

Expanded Traceability Matrix Row Example

OK. Now we’ve established traceability. How does this relate to configuration
management?

Studies have shown that system requirements change, on average, at the rate of 1-2% per
month of system development effort. That means that, on a system development project
that takes 10 months, between 10% and 20% of the total system requirements will
probably change. Let’s assume that our detailed requirement changes so that we measure
volume in 10-minute increments rather than 5-minute increments. How does this change
ripple through our system?

Since we’ve established traceability from the requirement to other parts of the system, we
can find the related pieces. The first thing we have to do is change the requirement.
Thus, the detailed requirement gets re-stated as follows:

R9 The system shall have the ability to monitor traffic volume
 R9.1 The system shall measure traffic volume

R9.1.1a The system shall measure traffic volume in 10-minute
increments

 R9.2 The system shall measure traffic speed

 27

We re-number the requirement by adding an “a” suffix to the original number to indicate
that it’s been modified. We’ll follow a similar procedure with the other elements that are
related to this requirement, if we modify them.

We modify the associated specification by changing the duration of the interval during
which the traffic volume count is made, as follows:

S38.17a The system shall calculate traffic volume by summing the actuations of
each detector over a ten-minute period.

So far, all we’ve changed are paper records. Now comes the time when we need to
change a software module. We know that there are three software modules associated
with this requirement, but we don’t have to change all three. It may only be necessary to
change one: VSM022. This module sums traffic data sent by the data detection module.
In its “current” version, it does this for a five-minute interval. The modified program
would have the following description:

Volume Summary Module 22 v2 (VSM022 v2) – summarizes all actuation data that it
receives during each discrete ten-minute interval. At the end of each interval, it
passes the summarized counts to a data storage module, clears its counters, and starts
over again.

In this case, rather than adding an “a” suffix to the identifier, we note that the software
module has a different version.

As long as the software module that writes the database record isn’t responsible for
deciding when the start time of the interval was, we don’t need to change that module.
So we’ll assume that we can leave it unchanged. Similarly, the data for the test that
we’ve defined will work for the revised module, although it now only covers two
intervals rather than three. With these decisions, we now know enough to be able to
create a modified row for our traceability matrix. This is illustrated in Figure 8.

Requirement(s) Specification(s) Software Module(s) Test(s)
R9.1.1a S38.17a DDM031, VSM022 v2, DSM040 VT063

Figure 8

Revised Traceability Matrix Row Example

We’ve just illustrated how you can use traceability as part of your configuration
management process to control changes to elements of your system. We knew what
elements were interrelated and could change all of them in a synchronized fashion.

While building a system, you want to keep the requirements for the system, the
documentation for the system, and the physical implementation of the system
synchronized. Of particular concern is keeping software items controlled. You can use
configuration management software systems to control software items, making sure that a

 28

completed and tested item is not modified without going through the process of
reviewing and evaluating any proposed changes, getting approval from the configuration
control board (or whatever change authority is established for the project). Software
configuration items, because they exist only in electronic form,14 can exist in electronic
libraries managed by configuration management software that lets programmers “check
out” a controlled software configuration item (program) to modify it. Programmers then
“check in” the modified program after a test group validates that the modified program
works correctly. The configuration management software keeps copies of all versions of
a software configuration item. Thus, if a new version of a software configuration item
turns out to be flawed, even after testing, you can replace it with the previous version,
reverting to the prior system state. In the example we used, we changed the requirement
for a software module, then replaced the first version of the software module with a
second version, which addressed the revised requirement. If we’d needed to replace the
module because of a bug, we’d still have indicated that there was a new version of the
program. But we might have numbered it as “version 1.01” to show that the revised
version didn’t have changed functionality.

Although we didn’t show this in our example, you can also correlate hardware items to
other system elements as we did in our traceability matrix row examples. You could add
columns to show which detectors (individually or by type) you used to count traffic
volume and to show which computers you ran the software on. If you do this, the
traceability matrix gets larger and, usually, more complex. That’s why people use
software systems and databases to handle configuration management. You can use these
same systems, or similar ones, to manage your hardware configuration as well, as long as
the systems have the capability to distinguish among different kinds of configuration
items. During system development you track both which hardware configuration items
you have installed (and where) and which you have successfully tested and integrated
with the appropriate software. If the new system requires upgrades to existing hardware,
you should use your configuration management system to track the upgrades as well.

So what happens after the system is implemented and in operation? That’s what we
cover in the next section.

Using Configuration Management During System Operation

Once a system is operational, it must keep working without unplanned interruptions. If
something in the system breaks or wears out, you replace or repair it, depending on which
is more efficient. What you don’t want is a problem that brings your system down.
Configuration management is a tool that can help you manage changes, minimizing
system down time due to unexpected “glitches”.15 Whether the government organization
operating the system is performing maintenance on all elements of the system or has
contracted out for maintenance on any part of it, including software, the government
agency is the organization responsible for overall maintenance of the system. Under

14 The listing of a computer program is not really the software.
15 A “glitch” is a software problem that causes a system failure.

 29

these circumstances, the agency needs to have a plan for continuing to manage the system
configuration.

Is configuration management still important on an operating system? Consider the
following two cases.

Case 1: In June 2001, a software “glitch” prevented the New York Stock Exchange
(NYSE) from trading stocks for almost 90 minutes.16 The financial markets felt the
impact even beyond the NYSE trading floor. Since investors couldn’t calculate market
indexes without NYSE data, trading also stopped at the American Stock Exchange and
some futures and options markets. It also slowed trading on the NASDAQ Stock Market,
due to investor reluctance to do business without information on NYSE trading. A new
software installation caused the problem. The NYSE had installed the software on 8 of
its 20 trading terminals and the system tested out the night before. However, the morning
of June 8th, it failed to operate properly on the 8 installations. The NYSE tried to switch
back to its old software, but was unable to do so before the opening of the trading
session. Although you might see this as a failure of the NYSE’s configuration
management process, in reality, it was a success. Although the problem didn’t arise until
right before the opening of trading, the NYSE recovered from the problem relatively
quickly. The computer system problems caused some red faces at the NYSE, but they
minimized the damage. They were back up and operating within 90 minutes. Had the
problem continued longer, the repercussions would have been more severe.

Case 2: ITS systems are just as vulnerable to “glitches,” perhaps even more so. Take the
example of an automated traffic signal control system with signals at 500 intersections,
one or more timing plans at each intersection, and a central database that contains a copy
of the timing plan(s) for each intersection. When technicians go to deal with a timing
problem at specific intersections, a technician may make a change to one or more of the
timing plans operating on a signal. For many reasons, the agency operating the
automated traffic signal control system wants to know what timing plan(s) were in effect
at each signal intersection and when each plan was in effect. What you hope is that the
technician records the fact that he or she changed the timing plan(s), when, and to what.

If the technician fails to record the change he or she made, or if the change isn’t recorded
in the central database, the agency’s configuration records are incorrect. If then a second
technician has to service the same intersection, the second technician may restore the
signal’s timing plan(s) to values inappropriate for current conditions. After all, the
second technician thinks that the correct timing plan(s) for the signal are what the central
database has, not the changed values that weren’t entered there.

Whether you see this as a failure of configuration management or as a problem with the
first technician, the effect is the same. An important configuration change didn’t get
recorded. A subsequent change to the same configuration item put it into an undesired
state. Good configuration management discipline would have prevented the error.

16 The Washington Post, “Computer Glitches Hit NYSE,” June 9, 2001, p. E01

 30

Web Development, Content Management, and Configuration
Management

Although the software development industry has used configuration management
successfully for many years and most configuration management systems handle
software development easily, the area where they don’t work well is web development.
If your ITS project involves web site development, you have some special things to think
about. Configuration management works well for keeping track of the tools that you use
to build the web site and any databases or scripts that you may use to build and manage
your web site. However, it doesn’t work well at all for managing the content of the web
site, once it’s been built and fielded.

Content management refers to the management of the information that you display or
provide on your web site. If all of the information on all of the pages in your web site is
static (i.e., it doesn’t change), then you could probably use a configuration management
system to manage each page. This would mean that each page, when it needed to be
changed, would be “checked out” of the configuration management system, modified,
reviewed, moved into production, and then the changed page would be “checked into”
the configuration management system to await the next modification. You could do this
with a configuration management system. But would you?

Probably not. Users concerned about how quickly they can get information out to their
“customers” usually manage web content. These users aren’t likely to be willing to
adhere to the discipline of configuration management when all they change is the text of
an informational page. And, in the fuzzy world of “content,” it’s hard to come up with a
convincing argument for applying the discipline that we normally apply to managing
software and hardware.

If we’re dealing with dynamic content management, the issue is more complex. Dynamic
content management usually means using an application that allows you to change the
content of a web page depending on either who’s reading it or on what actions the reader
takes. For example, you may establish user profiles (or you may give a frequent user of
your web site the ability to establish their own profiles) that you use to tailor the specific
content of your web pages to the interests and needs of that particular user. There are
many web creation and content management systems that allow you to do this today.
However, you can forget about having any of these pages in a controlled, disciplined
configuration management system. You may control the templates for your web pages in
a configuration management system, but not the actual pages themselves.

However, using configuration management does make sense if you’re building a new
web site or making major revisions to an existing one. Let’s take the new web site case
first.

Building a new web site involves creating both content and structure. Each page contains
either text or graphics and usually both. Pages may also have scripts associated with
them that are used to change the content of the page, based either on reader interaction

 31

(e.g., initiating a search of the site) or on pre-defined processes initiated by the site owner
(e.g., web ads). Web site developers may also create style sheets that apply to some or all
of the pages on a web site. Style sheets define the manner in which pages are formatted
for display, enabling web developers to change the look of a web site by changing only
the style sheet(s) instead of having to change each page individually. Since what’s being
done is similar to the development of a new product (you’re building components and
tying them all together), it makes sense to use a configuration management approach to
controlling and releasing these components for use.

Similarly, if you’re making major revisions to your web site, you want to hold off
displaying those revisions until all related or linked pages have gone through the revision
process. So you would probably put at least those pages that you wanted to change under
configuration control, allowing you to make the changes in an organized fashion and
them move the pages back into “production” once everything was ready. For example, if
you were making changes to an existing web site to bring it into compliance with the
requirements of section 508 of the Americans with Disabilities Act, you might pull all
pages requiring re-work and control their re-issuance with a configuration management
system. This would allow you to track your progress toward full compliance. The ability
to track the progress toward completing a major site revision is a useful feature of
configuration management.

Configuration Management Costs

In a perfect world, configuration management would be a tool we could employ knowing
it would solve the problems that it is designed to address. We’d give using it no more
thought than using a project schedule. But, just as using a project-scheduling tool to
manage a project schedule involves some effort on our part, configuration management
doesn’t come free. There are costs associated with it.

One cost is the configuration management system itself. The number of configuration
management systems in the market place changes frequently. It is impossible to have an
accurate, up-to-date list all of the systems in the market in a document like this.
However, the International Council on Systems Engineering (INCOSE) web page,
http://www.incose.org/tools/tooltax/cm_tools.html, is one place to look for information
on configuration management systems. Through its Tools Database Working Group,
INCOSE tries to maintain current and accurate information on all systems engineering
tools available to practitioners. Check that web site for information on products and
vendors of configuration management systems.

Another important cost is the cost of administering the configuration management system
itself. Although a contractor on an ITS project may handle configuration management
for the project, the contractor passes on the cost of doing so to the public sector in the
contractor’s fees or labor charges. As a public sector manager, you need to plan for and
incorporate these costs into your initial budget submission for your project. More
importantly, you should consider what you’ll do when the project is over and the ongoing
configuration management responsibilities for the system become yours (or those of

 32

someone in your organization). Configuration management doesn’t stop just because the
product has been developed. It’s an ongoing need as the system evolves and requires
maintenance. So you should look beyond the immediate project budget and consider how
you’ll integrate configuration management processes into your organizational structure.

While you’re building the system, you can assign configuration management
responsibilities to a contractor, either the software development contractor or an
independent verification and validation contractor. Thus the government agency that
contracted for the work doesn’t have to expend its own people to manage the system
configuration. If you plan to do this from the start of the project, you can budget in
moneys for your configuration management effort. During the system development
project, the configuration management team reports to the government project manager
and to the project’s configuration control board. Software development contractors are
usually knowledgeable about configuration management and have people on their staff
trained to perform the necessary functions. If the prime contractor for the system isn’t a
software development contractor but is used to building systems, the contractor usually
has experienced, knowledgeable people who can perform the necessary configuration
management for the project.

However, this situation changes once the system is implemented because, unless you
keep a contractor around to do configuration management for you, the responsibility for
keeping up the implemented configuration devolves to the government agency that
acquired the system. If your agency is going to maintain the system, you must make
clear from the outset of the project that you own the configuration management data and
that your people must have access to and training on the configuration management
system used during the project. This means that you must acquire a copy of the
configuration management software used, if any, since the contractor isn’t going to give
it to you for free. But, although the system isn’t necessarily yours as a project
deliverable, the data in that system should be. Don’t assume that you’ll get the data
automatically. Make getting it part of the contract between you and your contractor.

What If You Don’t Use Configuration Management?

There’s a commercial that you may have seen. An auto mechanic talks about a costly
engine repair that could have been avoided if the car’s owner had replaced his oil filter.
The mechanic says, “You can pay me now, or you can pay me later.” The quote’s just as
valid with regard to configuration management.

You can avoid the costs associated with configuration management by not bothering to
employ it on your ITS projects. If you do, you’ll probably pay instead in costs for:

• Figuring out which system components to change when requirements change

• Re-doing an implementation because you implemented to meet requirements that
had changed and you didn’t communicate that to all parties

 33

• Losing productivity when you replace a component with a flawed new version
and can’t quickly revert to a working state

• Replacing the wrong component because you couldn’t accurately determine
which component needed replacing

Is that enough?

The reason that configuration management is included as a key systems engineering
practice is simple. It works! It keeps you from incurring costs you need to incur. And,
good systems engineers have learned, through practical experience, that it pays for itself
many times over.

Don’t pay the price later! Use configuration management.

 35

Configuration Management Tools

Although it’s possible to conduct a configuration management program with no more
than a word processor and an electronic spreadsheet program on a personal computer, it’s
much easier to perform effective configuration management if you use a configuration
management software tool. Commercially available configuration management tools are
generally very useful, particularly on projects with large numbers of configuration items
to control or with complex configuration management requirements. In particular,
software-intensive projects (and ITS projects are frequently software-intensive) benefit
greatly from the use of configuration management tools.

We prefer not to recommend specific configuration management tools, for a couple of
reasons. First, the configuration management tool industry, like most software tool
industries today, is a competitive one that can change dramatically in a short time as
vendors upgrade their products. Any recommendation or ranking that we might make of
current tools would probably change by the time you read this document. Second, any
ranking or recommendation we might make may not apply to your project. Different
tools have different strengths and weaknesses and you need to assess for yourself which
ones best map to your needs.

To investigate configuration management tools, you can conduct a literature search, a
market survey, or just use a search engine on the Internet. Searching the Internet with
“configuration management” as your search argument will get you a fairly broad list of
sites to investigate. They’ll include both product sites and sites of configuration
management practitioners. They’ll also include sites that contain summarized
information about configuration management products. Two sites that you’ll probably
find with an Internet search are those of the International Council on Systems
Engineering and of the Institute of Configuration Management.

Let’s discuss what you’ll find on each site.

International Council on Systems Engineering (INCOSE)

INCOSE is an international non-for-profit organization, founded in 1990, with the stated
goal of promoting systems engineering as a means of “enabling the realization of
successful systems.” Their web site address is www.incose.org. INCOSE has many
resources of use to systems engineers and to those interested in systems engineering.
Among those resources is their Tools Database, accessible from their home page.

The INCOSE Tools Database contains information that INCOSE has collected through
the efforts of its Tools Database Working Group (TDWG), compiled in a series of
projects. Among those projects is a classification of systems engineering tools by
taxonomy. Although these taxonomies contain more than just configuration management
tools, we’re concentrating on the configuration management tool information that they
provide. The three taxonomies offered by INCOSE are:

 36

• IMPIG (Information Model & Process Interest Group) taxonomy – this is
an INCOSE group that has established a categorization (taxonomy) for
systems engineering processes. At its highest level, this taxonomy separates
systems engineering tools into four classifications:

- Management tools
- Engineering tools
- Information sharing tools
- Infrastructure support tools

You’ll find configuration management tools under “management tools.”
Following the links in this category brings you to a table that lists the
following information:

- Tool name
- Vendor
- Description (of the tool)
- Hardware supported
- Operating systems
- Universal resource locator (web locator for the product’s vendor)
- Last updated (date the information on the product was last updated by

INCOSE)

You can use the data in this table to find tools to investigate and consider for
your project.

• EIA-612 taxonomy – EIA-612 refers to the general systems engineering
standard, Process for Systems Engineering, originally developed by the
Electronics Industry Association (EIA) and then adopted by the American
National Standards Institute (ANSI) as the National systems engineering
standard. In this taxonomy, you can find systems engineering tools in the
“Control Process” category, under the major category, “Technical
Management.” Following the links yields a table with the same columns as
under the IMPIG taxonomy. However, this table has different rows, since it
contains more than just configuration management tools.

• IEEE-1220 taxonomy – The title of this taxonomy refers to the Institute of
Electronic and Electrical Engineers (IEEE) general systems engineering
standard, Standard for the Application and Management of the Systems
Engineering Process. The IEEE, another National standards-making body,
has developed its own set of standards for systems engineering and software
engineering. In this taxonomy, you’ll find configuration management tools
under the “Control Process” category as well. Following these links gets you
to the same table as does the IMPIG taxonomy.

 37

INCOSE is the more general and more objective of the two major sites where you can
find categorizations of configuration management tools. But let’s look at what’s at the
second site.

Institute of Configuration Management (ICM)

The ICM bills itself as “the world’s leading authority on configuration management and
business process infrastructure.” Its web site is www.icmhq.com. It was established in
the 1970s and has developed a proprietary version of the configuration management
process, which it labels “CMII.” The ICM has a certification program for configuration
management professionals who adopt the CMII approach. It certified its first
configuration management professional in 1987 and has since certified over 2,500 others.
Arizona State University and the University of Tennessee are co-sponsors of its
certification program and offer course related to the certification process on their
campuses.

CMII has achieved some success in industry and has been adopted as a configuration
management standard by major companies in the aerospace, automobile manufacturing,
and telecommunications industries.

The ICM has also certified several products as being CMII-compliant. You can find the
list of these products in a table on their web site. The table lists the following
information:

• System type (this refers to ICM categorizations and you will need to review
their material to determine specifically what “type” means.)

• System name
• Release version
• Provider’s name and web site
• Date certified

Since the ICM is only listing products that it has certified as being compliant with its CM
approach, this list is much smaller than the one provided by INCOSE.

As we said before, we’re not recommending any one approach or any one tool. We’re
simply providing information on how you can find out what tools are available and begin
to decide which ones work best for you and your project.

Good luck!

 39

References

ANSI/EIA Standard, ANSI/EIA-649-1998, National Consensus Standard for
Configuration Management, Electronic Industries Alliance, Arlington, VA: 1998

Buckley, Fletcher J., Implementing Configuration Management: Hardware, Software,
Firmware, Second Edition, IEEE Press, Piscataway, NJ: 1993

Daniels, M. A., Principles of Configuration Management, Advanced Application
Consultants, Inc., Rockville, MD: 1985

Estublier, Jacky, (Ed.) System Configuration Management, 9th International Symposium,
SCM-9, Conference Proceedings, Springer-Verlag, Berlin: 1999

Hajek, Victor G., Configuration management: Describing how engineering and
management disciplines can be applied to achieve the effective use of resources and the
complete and accurate description of the end products, Industrial and Commercial
Techniques, Ltd., London: 1968

IEEE Standard, IEEE Std 828-1998, IEEE Standard for Software Configuration
Management Plans, Institute of Electrical and Electronics Engineers, Inc., New York:
1998

Kelly, Marion V., Configuration Management: The Changing Image, McGraw-Hill Book
Company, Berkshire, England: 1996

Lyon, David D., Practical CM: Best Configuration Management Practices for the
Twenty-First Century, Butterworth-Heineman, Oxford: 2000

Magnusson, Boris (Ed.) System Configuration Management, ECOOP ’98, SCM-8
Symposium Conference Proceedings, Springer-Verlag, Berlin: 1998

McQueen, Bob and Judy McQueen, Intelligent Transportation Systems Architectures,
Artech House, Inc., Boston: 1999

Smith, Brian L. and Bayne E. Smith, “An Evaluation of the Need for Configuration
Management in Transportation Management Systems,” The Transportation Research
Board, November 2000

Software Program Managers Network, The Condensed Guide to Software Acquisition
Best Practices, February, 1997

Software Program Managers Network, Little Yellow Book of Software Management
Questions, February, 1997

 40

Watts, Frank B., Engineering Documentation Control Handbook: Configuration
Management, Second Edition, Noyes Publications, Park Ridge, NJ: 2000

	April 2002
	Prepared for
	Intelligent Transportation Systems
	Joint Program Office
	Table of Contents
	Executive Summary

	Intended Audience
	Origins of Configuration Management
	Current Configuration Management Standards
	Configuration Management Principles
	Figure ES-1
	Table ES-1

	Configuration Management and ITS Systems
	Configuration Management Costs

	What if You Don’t Use Configuration Management?
	Introduction

	Intended Audience
	Origins of Configuration Management
	Current Configuration Management Standards
	Configuration Management Principles

	Configuration Management Planning
	Deciding What Configuration Items to Control
	Deciding When to Control Configurations
	Deciding How to Change a Configuration
	Deciding on Configuration Management Resources

	Processor Chip
	Upgrading Desktop Software
	Figure 2
	Operations and Maintenance
	Acceptance Test
	Test
	Development
	Design
	Requirements Analysis
	System Conception

	Configuration Identification
	Configuration Control
	Proposing Changes to a Configuration Baseline
	Reviewing and Approving Changes to Configuration Baselines
	Figure 4

	ECP Title
	Disposition
	VT063
	VT063

	Configuration Status Accounting
	Configuration Audits
	Configuration Management and ITS Systems
	Using Configuration Management During ITS System Development
	Volume Test 63 (VT063) – This test will run for 12 minutes, falling into three discrete five-minute increments:
	 Increment #1 – From T+2:00 to T+4:59: 17 vehicles will pass through the detection area
	 Increment #2 – From T+5:00 to T+9:59: 42 vehicles will pass through the detection area
	 Increment #3 – From T+10:00 to T+13:59: 28 vehicles will pass through the detection area
	R9.1 The system shall measure traffic volume
	Figure 8

	Using Configuration Management During System Operation
	Web Development, Content Management, and Configuration Management
	Configuration Management Costs
	What If You Don’t Use Configuration Management?

Accessibility Report

		Filename:

		config_mgmt_FHWA-OP-02-048_20181128.pdf

		Report created by:

		NTL Digital Submissions, Librarian, ntldigitalsubmissions@dot.gov

		Organization:

		National Transportation Library, Cataloging/Metadata

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

